

Metodología Alkire-Foster para la construcción de un índice de pobreza multidimensional

Sabina Alkire (OPHI y GW) Lima, marzo 2016

Metodología Alkire-Foster (2007, 2011)

- Identificación del Pobre: Líneas duales
 - Línea de privación: Cada privación cuenta
 - Línea de Pobreza: En términos de valores agregados de privación
- Agregación entre los pobres: FGT ajustado reduce a FGT en un caso de una sola variable.
- Medida Clave: Nivel de incidencia ajustado $M_0 = IPM = HA$
 - H es el porcentaje de la población identificada como pobre
 - A es el promedio de dimensiones privadas que la población sufre al mismo tiempo, o intensidad

Observaciones

- La metodología de la pobreza multidimensional incluye identificación y agregación (Sen 1976)
- Identificación es de importancia critica.
- Axiomas son restricciones a la identificación y agregación
 - Restricciones conjuntas en la identificación y la agregación
- Descomposición por sub grupos, y (post identificación) por factor es clave para políticas públicas.
 - Descomposición por sub grupo clave para focalización
 - Desglosado por dimensión: clave para la coordinación de políticas publicas

Esta Metodología

- Alkire, S. and Foster, J. 2007. Counting and Multidimensional Poverty Measurement. OPHI Working Paper 7.
- Alkire, S. and Foster, J. 2011. Counting and Multidimensional Poverty Measurement. *Journal of Public Economics*.
- Alkire, S. and Foster, J. 2011. Understandings and Misunderstandings of Multidimensional Poverty Measurement. *Journal of Economic Inequality*.
- Alkire, S. J. Foster and M.E. Santos. 2011. Where did Identification Go? *Journal of Economic Inequality*
- Alkire, S. J. Foster, S. Seth, M.E. Santos, J.M.Roche, P. Ballon. Multidimensional Poverty Measurement & Analysis (OUP, 2015).
 - http://www.ophi.org.uk/research/multidimensional-poverty/

Desafío

• Un gobierno desearía crear un indice oficial de pobreza multidimensional

Desiderata

- Debe ser facil de entender y describir
- Debe estar de acuerdo con nociones de pobreza de "sentido común"
- Debe permitir focalizar programas de reduccion de pobreza, monitorear cambios y guiar la política publica
- Debe ser tecnicamente solido
- Debe ser viable
- Debe ser facil de replicar

¿Que recomendarías?

Pasos a seguir

Elegir

- Propósito del índice (monitorear, focalizar, otro)
- La unidad de análisis (individuo, hogar)
- Dimensiones
- Indicadores
- Umbrales de privación para cada indicador
- Ponderaciones de indicadores/dimensiones
- Método de Identificación
- Método de Agregación

En esta parte de la presentación...

- Asumimos que el propósito, las variables, los umbrales de privación han sido seleccionados.
- Nos concentramos en la **metodología** para medir la pobreza
- Identificación
- Agregación
- Nótese: El paso de identificación es mas difícil cuando hay muchas dimensiones

Revisión: Pobreza unidimensional

Variable – ingreso

Identificación – línea de pobreza

Agregación – Foster-Greer-Thorbecke (FGT) '84

Ejemplo Ingreso = (7,3,4,8) Línea de Pobreza z = 5

Vector de Privación $g^0 = (0,1,1,0)$

Tasa de incidencia $P_0 = \mu(g^0) = 2/4$

Vector de Brecha normalizado $g^1 = (0, 2/5, 1/5, 0)$

Brecha de Pobreza $P_1 = \mu(g^1) = 3/20$

Cuadrado del vector de la brecha $g^2 = (0, 4/25, 1/25, 0)$

Medida FGT = $P_2 = \mu(g^2) = 5/100$

Datos Multidimensionales

• Matriz de valores de bienestar para *n* personas en *d* dominios

$$y = \begin{bmatrix} 13.1 & 14 & 1 & 1 \\ 15.2 & 7 & 1 & 0 \\ 12.5 & 10 & 0 & 0 \\ 20 & 11 & 1 & 1 \end{bmatrix}$$
Personas

Datos Multidimensionales

• Matriz de valores de bienestar para *n* personas en *d* dominios

$$z = \begin{bmatrix} 13 & 12 & 1 & 1 \end{bmatrix}$$
 Cortes

Matriz de Privaciones

• Reemplazar entadas: 1 si hay privado, 0 si no hay privación.

$$z = \begin{bmatrix} 13 & 12 & 1 \end{bmatrix}$$
 Cortes

Matriz de Privaciones

• Reemplazar entadas: 1 si hay privado, 0 si no hay privación.

Matriz de Brecha Normalizada

• Brecha Normalizada = $(z_j - y_{ji})/z_j$ si hay privación, 0 si no hay privación

Dominios

$$\mathbf{y} = \begin{bmatrix} 13.1 & 14 & 1 & 1 \\ 15.2 & \underline{7} & 1 & \underline{0} \\ \underline{12.5} & \underline{10} & \underline{0} & \underline{0} \\ 20 & \underline{11} & 1 & 1 \end{bmatrix}$$
Personas

$$z = \begin{bmatrix} 13 & 12 & 1 & 1 \end{bmatrix}$$
 Cortes

Estas entradas están bajo el umbral

Matriz de brecha Normalizada

• Brecha Normalizada = $(z_j - y_{ji})/z_j$ si hay privación, 0 si no hay privación

$$\mathbf{g^1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42 & 0 & 1 \\ 0.04 & 0.17 & 0.67 & 1 \\ 0 & 0.08 & 0 & 0 \end{bmatrix}_{\text{Personas}}$$

Matriz de brecha al Cuadrado

• Brecha al Cuadrado = $[(z_j - y_{ji})/z_j]^2$ si hay privación, 0 si no hay privación

Identificación

• Matriz de privaciones

$$\mathbf{g^0} \!\! = \! \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}^{\text{Personas}}$$

Identificación – Contando privaciones

		С			
	0	0	0	0	0
$\mathbf{g}^0 = \left \right $	0	1	0	1	2
	1	1	1	1	4
	0	1	0	0	1

Quién es pobre?

Identificación – Enfoque de la unión

- Quién es pobre?
- Pobre si es privado en cualquier dimensión $c_i \ge 1$

	Dominios						
	0	0	0	0	0		
$\mathbf{g^0}$	0	1	0	1	2		
	1	1	1	1	4		
	0	1	0	0	1		

Identificación – Enfoque de la unión

- Quién es pobre?
- Pobre si es privado en cualquier dimensión $c_i \ge 1$

	Dominios						
	0	0	0	0	0		
$\mathbf{g^0} = \left egin{array}{c} 0 \\ 1 \\ 0 \end{array} \right $	0	1	0	1	<u>2</u>		
	1	1	1	<u>4</u>			
	0	1	0	0	<u>1</u>		

- Enfoque de Unión generalmente predice números mas grande.
- Chakravarty et al '98, Tsui 2002, Bourguignon & Chakravarty 2003 etc. usan el enfoque de unión.

Identificación – Enfoque de intersección

- Quién es pobre?
- Pobre si es privado en todas las dimensiones $c_i = d$

		C			
	0	0	0	0	0
$\mathbf{g^0} = \begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix}$	0	1	0	1	2
	1	1	1	1	4
	0	1	0	0	1

Identificación – Enfoque de intersección

- Quién es pobre?
- Pobre si es privado en todas las dimensiones $c_i = d$

		c			
	0	0	0	0	0
~0-	0	1	0	1	2
g ^u =	1	1	1	1	<u>4</u>
	0	1	0	0	1

- Altos requerimientos (especialmente cuando d es largo)
- Generalmente identifica un pequeño segmento de la población
- Atkinson 2003 primero en nombrar unión e intersección

Identificacion – El problema empírico

k =	H
Union 1	91.2%
2	75.5%
3	54.4%
4	33.3%
5	16.5%
6	6.3%
7	1.5%
8	0.2%
9	0.0%
Inters. 10	0.0%

Pobreza en India para 10 dimensiones:

91% de población podría ser focalizado usando unión

0% usando interseccion

Necesita algo en el Medio.

(Alkire and Seth 2009)

Identificación - Enfoque de corte dual

- Quién es pobre?
- Pobre si es privado $c_i \ge k$ dimensiones

		C			
	0	0	0	0	0
$\mathbf{g}^0 = \left \begin{array}{c} \\ \end{array} \right $	0	1	0	1	2
	1	1	1	1	4
	0	1	0	0	1

Identificación - Enfoque de corte dual

- Quién es pobre?
- Pobre si es privado $c_i \ge k$ dimensiones (Ej. k = 2)

		c			
	0	0	0	0	0
\mathbf{g}^0 =	0	1	0	1	<u>2</u>
	1	1	1	1	<u>4</u>
	0	1	0	0	1

Incluye ambos enfoque de unión (k = 1) e intersección (k = d)

• Censurar los datos de los no pobres

	Dominios						
	0	0	0	0	0		
0	O	1	0	1	<u>2</u>		
g *-	1	1	1	1	<u>4</u>		
	0	1	0	0	1		

Censurar los datos de los no pobres

$$\mathbf{g^0(k)} = \begin{array}{|c|c|c|c|c|c|} \hline \textbf{Dominios} & \textbf{c(k)} \\ \hline & 0 & 0 & 0 & 0 & \textbf{0} \\ \hline & 0 & 1 & 0 & 1 & \textbf{2} \\ \hline & 1 & 1 & 1 & 1 & \textbf{4} \\ \hline & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}$$

• Similarmente para g¹(k), etc.

Agregación – Tasa de recuento

Censurar los datos de los no pobres

$$\mathbf{g^0(k)} = \begin{array}{|c|c|c|c|c|} \hline \textbf{Dominios} & \textbf{c(k)} \\ \hline 0 & 0 & 0 & 0 & \textbf{0} \\ \hline 0 & 1 & 0 & 1 & \textbf{2} \\ \hline 1 & 1 & 1 & 1 & \textbf{4} \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}$$

• Dos de cuatro personas: H = 1/2

Crítica

 Suponga que el numero de privaciones aumenta para la persona 2

		Don	c(k		
	0	0	0	0	0
$\mathbf{g}^{0}(\mathbf{k}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1	1	0	1	<u>3</u>
	1	1	1	<u>4</u>	
	0	0	0	0	0

- Dos de cuatro personas: H = 1/2
- No hay cambio! => Viola 'monotonicidad dimensional'

• Regresemos a la matriz original

- Necesitamos aumentar información
- % de privaciones entre los pobres

		Don	ninio	8	c(k)	c(k)/d
	0	0	0	0	0	
042-	0	1	0	1	<u>2</u>	2/4
g ⁰ (k)=	1	1	1	1	<u>4</u>	4/4
	0	0	0	0	0	

- Necesitamos aumentar información
- % de privaciones entre los pobres

		Dominios			c(k)	c(k)/d
	0	0	0	0	0	
$g^0(k)=$	0	1	0	1	<u>2</u>	2/4
g*(k)-	1	1	1	1	<u>4</u>	4/4
	0	0	0	0	0	

 A = promedio de la proporción de privaciones entre los pobres = 3/4

Agregación – Tasa de Recuento Ajustada

• Tasa de Recuento Ajustada = $M0 = HA = \mu(g^0(k)) = 6/16$ = .375

	Dominios				c(k)	c(k)/d
	0	0	0	0	0	
g ⁰ (k)=	0	1	0	1	<u>2</u>	2/4
	1	1	1	1	<u>4</u>	4/4
	0	0	0	0	0	

Agregación – Tasa de Recuento Ajustada

• Tasa de Recuento Ajustada = $M0 = HA = \mu(g^0(k)) = 7/16$ = .44

$$\mathbf{Dominios} \qquad \mathbf{c(k)} \quad \mathbf{c(k)}/\mathbf{d}$$

$$\mathbf{g^0(k)} = \begin{bmatrix} 0 & 0 & 0 & 0 & \mathbf{0} \\ 1 & 1 & 0 & 1 & \mathbf{3} & \mathbf{3}/4 \\ 1 & 1 & 1 & 1 & \mathbf{4} & \mathbf{4}/4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Ahora A = 7/8
- Nota: si la persona 2 sufre de una privación adicional, M0 aumenta => Satisface la monotonicidad dimensional

Tasa de Recuento Ajustada $M_0 = IPM$

- Válida para datos ordinales (identificación & agregación) es robusta a transformaciones monotónicas de los datos.
- Similar a la brecha tradicional P1 = HI; aquí = HA
- Fácil de calcular, fácil de interpretar
- Puede ser desagregada por dimensión políticas
- Resultados de dominancia
- Nota: puede ir más allá si las variables son cardinales

Extensión: Pesos Generales

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
 Personas

Matris de carencias

Vector de ponderacions
$$\omega = (.5 \ 2 \ 1 \ .5)$$

Extensión: Pesos Generales

Dimensiones

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & .5 \\ .5 & 2 & 1 & .5 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$
 Personas

Matris de carencias

Vector de ponderacions
$$\omega = (.5 \ 2 \ 1 \ .5)$$

Ejemplo: Ponderaciones - Identificación

Dimensiones

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & .5 \\ .5 & 2 & 1 & .5 \\ 0 & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2.5 \\ 4 \end{bmatrix}$$
Personas

Matris de carencias

Vector de ponderacions
$$\omega = (.5 \ 2 \ 1 \ .5)$$
 $k = 2$

La identificacion cambia!

Ejemplo: Ponderaciones - Identificación

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & .5 \\ .5 & 2 & 1 & .5 \\ 0 & 2 & 0 & 0 \end{bmatrix} \frac{0}{2.5}$$
Personas

Vector de ponderacions
$$\omega = (.5 \ 2 \ 1 \ .5)$$
 $k = 2.5$

Identificación Original: k=2.5

Ejemplo: Ponderaciones – Agregación k = 2.5

Dimensiones

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & .5 \\ .5 & 2 & 1 & .5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{array}{c} 0 \\ \underline{\textbf{2.5}} \\ \underline{\textbf{4}} \\ \underline{\textbf{Personas}} \\ 2 \end{bmatrix}$$

$$M_0$$
 = media de la matriz = $\mu(g^0(k))$ = 6.5/16
 $H = 2/4$
 $A = 6.5/8$ $M_0 = H \times A$

Agregación: Brecha de Pobreza Ajustada

Si tenemos datos cardinales podemos aumentar información de M_0 . Usamos brechas normalizadas

$$g^{1}(k) = \begin{bmatrix} 0 & Dominios & 0 & 0 \\ 0 & 0.42 & 0 & 1 \\ 0.04 & 0.17 & 0.67 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
Personas

Brechas promedio a través de todas las dimensiones donde los pobres sufren privaciones:

$$G = 0.42+1+0.04+0.17+0.67+1/6$$

Agregación: Brecha de Pobreza Ajustada

Brechas de Pobreza Ajustadas = $M_1 = M_0G = HAG = \mu(g^1(k))$

Dominios

$$g^{1}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42 & 0 & 1 \\ 0.04 & 0.17 & 0.67 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
Personas

Brechas promedio a través de todas las dimensiones donde los pobres sufren privaciones:

$$G = 0.42+1+0.04+0.17+0.67+1/6$$

Agregación: Brecha de Pobreza Ajustada

Brechas de Pobreza Ajustadas = $M_1 = M_0G = HAG = \mu(g^1(k))$

$$g^{1}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42 & 0 & 1 \\ 0.04 & 0.17 & 0.67 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
Personas

Obviamente, si las privaciones que sufre una persona pobre en una dimensión se vuelven aun más profundas, entonces M_1 aumentará.

Satisface el axioma de monotonicidad

Agregación: FGT Ajustada

Consideremos la matriz de brechas al cuadrado FGT ajustada es $M_2 = \mu(g^2(k))$

Dominios

$$g^{2}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42^{2} & 0 & 1^{2} \\ 0.04^{2} & 0.17^{2} & 0.67^{2} & 1^{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
Personas

Satisface el axioma de transferencia

Agregación: AF Familia

AF Familia es $M_{\alpha} = \mu(g^{\alpha}(t))$ para $\alpha \ge 0$

$$g^{\alpha}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42^{\alpha} & 0 & 1^{\alpha} \\ 0.04^{\alpha} & 0.17^{\alpha} & 0.67^{\alpha} & 1^{\alpha} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 Personas

Propiedades

• Nuestra metodología satisface un número de propiedades típicas de las medidas de pobreza multidimensional (ampliadas):

simetría,
 normalización
 foco en pobreza
 foco en privaciones
 ordinalidad

invariancia de escala invariancia de réplica monotonicidad débil reordenamiento débil desaggregación por dimension

- M_{0} , M_{1} y M_{2} satisfacen monotonicidad dimensional y descomponibilidad
- M_1 y M_2 satisfacen *monotonicidad* (para $\alpha > 0$) eso es, son sensibles a cambios en la profundidad de las privaciones en todos los dominios con datos cardinales.
- M_2 satisface el axioma de transferencia débil (para $\alpha > 1$).

Los datos ordinales

- Los datos ordinales representan el **orden de rango** de las entidades medidas. Nada se sabe sobre la **distancia** entre las posiciones de los rangos.
- Ejem. 1 2 3 4 = 1 2 3 4
- Por esta razón, operaciones importantes usando datos ordinales deben ser **robustas a transformaciones monotónicas** de los datos (Roberts).
- Comparaciones de mayor y menor *pueden* ser hechas, en adición a igualdad y desigualdad.
- Sumas y restas no tienen sentido.
- La moda y la mediana pueden ser definidas, pero no la media.
- Se pueden definir quintiles, máximos y mínimos.

Los datos ordinales

- La estimación de pobreza no debería variar ante una transformación en la escala de los datos ordinales que respete su orden.
- La medida M_0 satisface este requerimiento.
- Dado que muchas de las variables típicamente consideradas en el análisis multidimensional son ordinales, M_0 es una medida particularmente útil.
- Todos los países han utilizado M₀ su IPM oficial.

